Serret–Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties

LIAO Yu-lei(廖煜雷)1, ZHANG Ming-jun(张铭钧)1,2, WAN Lei(万磊)1

1. Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China; 2. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

Abstract: The path following problem for an underactuated unmanned surface vehicle (USV) in the Serret–Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret–Frenet frame and global coordinate transformation, the control problem of underactuated system (a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system (a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller (BADSMC) is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control (DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.

Key words: path following; underactuated unmanned surface vehicle; backstepping; dynamic sliding mode control

1 Introduction

Over the past decade, the control problem of underactuated systems has attracted a great deal of attention [1–3]. In this work, we address the path following of underactuated USV with uncertainties. The challenging problem is how to control the ternate freedom motions by only two independent inputs [4]. Recently, path following problem has attracted less attention than trajectory tracking. The USV path following has been addressed with two different methods: one is to treat it as a tracking control [5−7], and the other is to simplify the following control into a regulation problem by adopting proper path following error dynamics equation [8–10]. For the latter method, the Serret–Frenet frame is frequently adopted to obtain the error dynamics equation. ENCARNACAO et al [11] considered a fourth order ship model subjected to constant direction ocean-current disturbance in the Serret–Frenet frame, and developed a control strategy to follow both the straight-line and the circle. In Ref. [12], a path following controller was proposed based on a transformation of the ship kinematics to the Serret–Frenet frame on the path, where an acceleration and linearization of dynamics was used. DO and PAN [13] presented an output feedback path following strategy, where ultimate convergence was proven for an underactuated ship with environmental disturbances. However, the proposed method in Ref. [13] requires a state transformation, which becomes singular at some configuration. In Ref. [14], a simplified vessel model was used to develop a path following control system, and a controller was presented based on backstepping technique and Lyapunov’s direct method. However, the sway motion is neglected, and the simplified vessel model ignores the influence of nonlinear yaw motion.

Considering the uncertainties of the vehicle model, in Ref. [15], the combined controller of trajectory-tracking and path-following was proposed based on the Lyapunov’s direct method, which has obtained good control effect. The problem of combined trajectory-tracking and path-following for underactuated USV with parametric modeling uncertainty was addressed in Ref. [16]. In Ref. [17], a global path following controller was proposed for underactuated ship with non-zero off-diagonal terms. In Ref. [18], the authors assumed that the surge velocity is constant, and proposed a nonsingular Serret–Frenet based path-following controller by Lyapunov’s direct method and backstepping technique. However, in the above-mentioned papers the mass and damping matrices of the USVs are presumed to be diagonal. In Ref. [19], the authors presented a new control strategy for underactuated USV with non-zero off-diagonal terms. In Ref. [20], the authors proposed a new control strategy for underactuated USV with non-zero off-diagonal terms. However, in the above-mentioned papers the mass and damping matrices of the USVs are presumed to be diagonal. Furthermore, these papers have ignored the impact of the nonlinear damping terms, namely high-

Foundation item: Project(51409061) supported by the National Natural Science Foundation of China; Project(2013M540271) supported by China Postdoctoral Science Foundation; Project(LBH-Z13055) supported by Heilongjiang Postdoctoral Financial Assistance, China; Project (HEUCFD1403) supported by Basic Research Foundation of Central Universities, China

Received date: 2013−09−12; Accepted date: 2014−07−08
Corresponding author: LIAO Yu-lei, PhD; Tel: +86−18045623860; E-mail: liaoyulei@hrbeu.edu.cn
speed applications are excluded [19]. It is noted that in Ref. [19], the nonlinear damping matrix is included and DO and PAN proposed a robust path-following method based on backstepping technique and presented experiment results on an USV to illustrate the proposed method. Moreover, DO and PAN [20], the authors considered the influences caused by the non-diagonal term, nonlinear damping and time-varying environmental disturbance, and designed a global robust adaptive path-following controller by using dynamic structure of the ship together with backstepping technique.

In this work, we consider the path following problem for underactuated USV and the limitations of the above paper, and propose a robust control strategy. We develop the path following mathematic model of underactuated USV under the Serret–Frenet frame. Considering the path following problem, a backstepping adaptive dynamical sliding mode controller (BADSMC) is proposed based on backstepping method and theory of dynamical sliding mode control (DSMC). Based on Lyapunov stability analysis, we demonstrate that the original system is globally stabilized in the function of proposed controller. Numerical simulations using the real parameters of a USV are presented to illustrate the effectiveness of our proposed controller, and the advantage of the controller is that control system is strongly robust and adaptive to the parametric modeling uncertainty and environment disturbances.

2 Problem formulation

In this work, the nonlinear damping terms are considered to cover both low-speed and high-speed applications of USV. The frame definitions and motion model of a USV are shown in Fig. 1.

The mathematical model of an underactuated USV moving on a horizontal plane is described as [21]

\[
\begin{align*}
\dot{x} &= u \cos \psi - u \sin \psi \\
\dot{y} &= u \sin \psi + u \cos \psi \\
\psi &= r
\end{align*}
\]

\[\dot{u} = \frac{m_{11} - m_{22} - m_{23}}{m_{11}} u - \frac{X_F}{m_{11}} |u| u + \frac{F_u}{m_{11}} + \frac{d_u}{m_{11}}
\]

\[\dot{v} = \frac{m_{11} - m_{22} - m_{23}}{m_{22}} v - \frac{Y_F}{m_{22}} |v| v + \frac{d_v}{m_{22}}
\]

\[\dot{r} = \frac{m_{11} - m_{22} - m_{23}}{m_{33}} r - \frac{N_r}{m_{33}} |r| r + \frac{T_r}{m_{33}} + \frac{d_r}{m_{33}}
\]

where \(x, y, \) and \(\psi\) denote the position and orientation of USV in the earth-fixed frame (\(\{E\}\)-frame); and \(u, v, r\) denote respectively the surge, sway and yaw velocities in the body-fixed frame (\(\{B\}\)-frame) (see Fig. 1); \(m_{11}, m_{22}, m_{33}\) are the vehicle inertial including additional masses;

\[X_u, Y_r, N_r, X_{\mathbb{H}_F}, Y_{\mathbb{H}_F}, N_{\mathbb{H}_F}\] denote the hydrodynamic damping; \(F_u\) and \(T_r\); only control inputs are the surge force and yaw moment in \(\{B\}\)-frame; \(d_u, d_v, d_r\) denote respectively the surge, sway and yaw external disturbances caused by model perturbation, measuring noise, environmental disturbance, which satisfy the bounded condition of \(|d_u| \leq \bar{d}_u, |d_v| \leq \bar{d}_v, |d_r| \leq \bar{d}_r\), and slow condition of \(d_u = 0, d_v = 0, d_r = 0\).

In the path following problem, we do not consider the speed and time restrictions. Therefore, we assume the surge velocity \(u\) is a positive constant (or an independent controller is used to maintain the surge velocity of vehicle). This assumption is applied by many scholars [12, 22]. Hence, the path-following mathematic model of underactuated USV has been simplified into

\[
\begin{align*}
\dot{x} &= u \cos \psi - u \sin \psi \\
\dot{y} &= u \sin \psi + u \cos \psi \\
\dot{\psi} &= r
\end{align*}
\]

\[\dot{u} = \frac{m_{11} - m_{22} - m_{23}}{m_{11}} u - \frac{X_F}{m_{11}} |u| u + \frac{F_u}{m_{11}}
\]

\[\dot{v} = \frac{m_{11} - m_{22} - m_{23}}{m_{22}} v - \frac{Y_F}{m_{22}} |v| v + \frac{d_v}{m_{22}}
\]

\[\dot{r} = \frac{m_{11} - m_{22} - m_{23}}{m_{33}} r - \frac{N_r}{m_{33}} |r| r + \frac{T_r}{m_{33}} + \frac{d_r}{m_{33}}
\]

\[y_{u1} = x\]

\[y_{u2} = y\]

\[y_{u2} = \psi\]
where \(y_a, y_b, y_c \) denote the system outputs.

It is clear that Eq. (2) is a nonlinear control system with single-input and twin-output. The control objective of this work is to propose the yaw moment to drive the USV to follow a desired path \(C \) (see Fig. 1), where \(M \) is the origin of Serret–Frenet frame (\(\{SF\} \)-frame), and \(M \) is the orthogonal projection of the USV barycenter \(G \) on path \(C \). The parameters \(x_\eta, x_\nu \) denote respectively the normal and tangent unit vectors to the path at \(M \). We define that \(\psi_{SF} \) is the angle between \(x_\nu \) and \(X \)-axis, the parameter \(s \) is the distance along the path \(C \) between a arbitrary fixed point in the path and \(M \), and \(s \) is bounded and differentiable variable. The parameter \(z_e \) denotes the distance between \(G \) and \(M \), and \(\psi_{SF} = \psi - \psi_{SF} \) denotes cross-track error, the velocity \(u = \sqrt{u_\nu^2 + u_\tau^2} \) is total velocity of USV. The \(\beta \) is the angle between \(u \) and \(u_\nu \), i.e., sideslip angle.

Figure 1 shows the diagrammatic sketch of path following under \(\{SF\} \)-frame. The errors dynamic equation based on \(\{SF\} \)-frame is developed as follows [12]:

\[
\dot{z}_e = u \sin \psi_e + u \cos \psi_e
\]

\[
\dot{\psi}_e = r - \frac{c(s)}{1 - c(s)}(u \cos \psi_e - u \sin \psi_e)
\]

\[
\dot{s} = \frac{1}{1 - c(s)}(u \cos \psi_e - u \sin \psi_e)
\]

where the curvature of the path at point \(M \) is denoted by \(c(s) \). Note that Eq. (3) is singular when \(c(s) z_e \to 0 \). Hence, we consider the following assumptions [13]:

Assumption 1: We assume that the condition \(1 - c(s) z_e \lambda > 0 \) is always satisfied.

Assumption 2: The USV parameters satisfy the condition \(m_{22} u_\nu^2 - m_{11} u_\tau^2 > 0 \).

Substituting Eq. (3) into Eq. (2) yields

\[
\dot{z}_e = u_t \sin \psi_e^* + u \cos \psi_e^*
\]

\[
\dot{\psi}_e^* = r - \frac{c(s)}{1 - c(s)}u_t \cos \psi_e^* - \frac{u}{u_t} \left(\frac{Y_{1e}}{m_{22}} + \frac{Y_{2e}}{m_{22}} \right)
\]

\[
\dot{u} = \frac{m_{11} m_{22} u_\nu}{m_{22} m_{11} u_\nu} - \frac{Y_{1e}}{m_{22}} \| u - d_u \|_2
\]

\[
\dot{r} = \frac{m_{11} m_{22} u_\tau}{m_{22} m_{11} u_\tau} - \frac{N_e}{m_{22}} - \frac{N_{pe}}{m_{22}} r + \frac{T_r}{m_{33}} + \frac{d_r}{m_{33}}
\]

\[
y_1 = z_e
\]

\[
y_2 = \psi_e^*
\]

where \(y_1 \) and \(y_2 \) denote the system outputs; \(\psi_e^* = \psi_e + \beta \) is corrected cross-track error [13]. It is obviously that the original Eq. (2) is simplified into Eq. (4) with singleinput and twin-output by introducing the Serret–Frenet frame.

Therefore, the control objective can be formally expressed as follows: we consider the path following Eq. (4), and design a feedback control law \(T_r \) to ensure the system states \((z_e, \psi_e^*) \) globally stable about the origin.

3 Control design

By the introduction of intermediate controller, backstepping technique makes the controller design procedural and systematical. It is a very effective method of analysis and design for nonlinear system. Hence, backstepping technique is widely applied to nonlinear systems such as the robots, spacecrafts, aircrafts, electric engines, missile, ships [18–25]. In recent years, some researchers have already apply backstepping technique to the control problem of underactuated marine launch systems [26–28].

Before processing the control design, we first ignore the sway external disturbance, i.e. \(d_r = 0 \). Therefore, the Eq. (4) is rewritten as

\[
\dot{z}_e = u_t \sin \psi_e^* + u \cos \psi_e^*
\]

\[
\dot{\psi}_e^* = a_1 r + a_2
\]

\[
\dot{r} = a_3 + \frac{T_r}{m_{33}} + \frac{d_r}{m_{33}}
\]

\[
\dot{u} = -\frac{m_{11} m_{22} u_\nu}{m_{22} m_{11} u_\nu} - \frac{Y_{1e}}{m_{22}} \| u - d_u \|_2
\]

\[
y_1 = z_e
\]

\[
y_2 = \psi_e^*
\]

where \(a_1 = 1 - \frac{m_{11} u_\tau^2}{m_{22} u_\nu^2}, a_2 = \frac{m_{11} m_{22} u_\nu}{m_{22} m_{11} u_\nu} - \frac{N_e}{m_{33}} - \frac{N_{pe}}{m_{22}} r \),

\[
a_2 = \left(\frac{c(s) u_t \cos \psi_e^* - \frac{u}{u_t} \left(\frac{Y_{1e}}{m_{22}} + \frac{Y_{2e}}{m_{22}} \right) \| u \|_2 \right)
\]

In the following section, we design the controller for subsystem \((z_e, \psi_e^*, r) \), and prove the sway motion \(\nu \) is input-to-state stable (ISS).

The sliding mode control (SMC) method has been widely used in nonlinear control systems, but it inevitably contains the “chattering” problem. However, the “chattering” can only be weaken to a certain extent for the SMC. As an effective way to eliminate chattering, DSMC is applied to nonlinear systems such as the arms, robots, nuclear power systems [23–26].

Recently, many scholars have already applied backstepping technique to the control problem of underactuated systems [4, 27–28]. Backstepping technique makes the controller design systematical and procedural. It is a very effective method for sliding mode control for
non-matching uncertainties and non-minimum phase systems [29]. In this work, we propose a BADSMC method by combining backstepping technique with adaptive technology and theory of DSMC.

3.1 State transformation and system analysis

To facilitate the control analysis and design, we consider the following global coordinate transformation:

\[w_e = \psi_e^* + \arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \]

(6)

where \(k \) is a positive constant.

Substituting Eq. (6) into subsystem \((z_e, \psi_e^*, r)\) of Eq. (5) yields a new system:

\[
\begin{align*}
\dot{z}_e &= u_1 \sin \left(w_e - \arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \right) \\
w_e &= \frac{k_z e \sin \psi_e^*}{[1 + (k_z e)^2]} + a_2 + a_1 r \\
\dot{r} &= a_3 + \frac{T_e}{m_{33} + d_r / m_{33}} \\
\end{align*}
\]

(7)

where \(f_1 = k \sin \psi_e^*/[1 + (k_z e)^2] \).

From Eq. (6), we obtain

\[\psi_e^* = w_e - \arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \]

(8)

We construct an equivalently nonlinear system for Eq. (7):

\[
\begin{align*}
\dot{\zeta}_1 &= u_1 \sin \left(\zeta_1 - \arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \right) \\
\dot{\zeta}_2 &= a_3 + \frac{T_e}{m_{33} + d_r / m_{33}} \\
\zeta_e &= u_1 \sin \left(\zeta_1 - \arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \right) \\
\zeta &= \zeta_1 \\
\end{align*}
\]

(9)

where \(\zeta_1 = w_e, \zeta_2 = r, \) and \(\zeta \) denote system outputs. Note that the relative order of Eq. (9) is 2, and when the controller \(T_e \) renders the \(w_e \) (i.e., \(\zeta_1 \)) globally stable, the zero dynamics of Eq. (9) becomes

\[\dot{z}_e = -k u_z e / \sqrt{1 + (k_z e)^2} \]

(10)

Defining Lyapunov function as \(V_2 = z_e^2 / 2 \), and differentiating \(V_2 \) along the solution of Eq. (9) yield

\[\dot{V}_2 = -k u_z e^2 / \sqrt{1 + (k_z e)^2} \leq 0 \].

By Lyapunov stability theorem [30], we can prove that \(z_e \) is globally asymptotically stable. Hence, Eq. (7) is a minimum phase and self-stabilization system. From Eq. (8), when \(w_e \) is globally converge to zero, we have

\[\psi_e^* = -\arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \]

(11)

where the global stability of \(z_e \) implies that the \(w_e \) is also globally asymptotically stable.

Based on the above analysis results, we obtain a conclusion. For Eq. (7), if we choose a feedback control law \(T_e \) to render \(w_e \) globally asymptotically stable, then guarantee that the original system state \((z_e, \psi_e^*)\) is globally asymptotically stable. Hence, system (Eq. (7)) is a minimum phase and self-stabilization system.

Note that the underactuated Eq. (7) has been simplified into a full-actuated system as follows:

\[
\begin{align*}
\dot{w}_e &= u_1 f_1 + a_2 + a_1 r \\
\dot{r} &= a_3 + T_e / m_{33} + d_r / m_{33} \\
\end{align*}
\]

(12)

Obviously, the control problem of subsystem \((z_e, \psi_e^*, r)\) in underactuated Eq. (5) is transformed into the control of Eq. (12).

3.2 Backstepping adaptive dynamic sliding mode controller design

The controller design consists of two steps as follows.

Step 1: Stabilizing subsystem \(w_e \).

Considering the following subsystem of Eq. (12)

\[
\begin{align*}
\dot{z}_e &= u_1 \sin \left(\zeta_1 - \arcsin \left(\frac{k_z e}{\sqrt{1 + (k_z e)^2}} \right) \right) \\
\dot{z}_e &= a_3 + \frac{T_e}{m_{33} + d_r / m_{33}} \\
\end{align*}
\]

(13)

differentiating \(V_1 \) along the solution of Eq. (12) yields

\[V_1 = w_e^2 / 2 \]

(14)

From Eq. (15), we choose the desired control input \(r \) as

\[
\begin{align*}
r_d &= a_1^{-1} \cdot (u_1 f_1 + a_2 + k w_e) \\
&= -\frac{m_{22} u_1^2}{(m_{22} u_1^2 - m_1 u_1^2)} \left[u_1 f_1 - c(s) u_1 \cos \psi_e^* \right] \frac{1 - c(s) z_e^2}{1 - c(s) z_e^2} \left[\frac{Y_{u1} - m_{22} u_1^2}{m_{22}^2} \right] \]

(16)

where \(k_1 \) is a positive constant.

Remark 1: Note that Eq. (16) is singular when \(1 - c(s) z_e^2 = 0 \) or \(m_{22} u_1^2 = m_1 u_1^2 \). However, Assumptions 1 and 2 imply that the conditions \(1 - c(s) z_e^2 > 0 \) and \(m_{22} u_1^2 - m_1 u_1^2 > 0 \) are simultaneously satisfied.

Substituting control law Eq. (16) into Eq. (15) yields

\[\dot{V}_1 = -k_1 w_e^2 \leq 0 \]

(17)
However, r_d is not the actual control input; then we define the following error variable as
\[
z_2 = r - r_d = r + a_1^{-1} \cdot (u_f + a_2 + k_w) \tag{18}\]
Substituting Eq. (18) into Eq. (15) yields
\[
\dot{V}_1 = -k_1 w^2 + a_1 w_z z_2 \tag{19}\]
Clearly, Eq. (12) is rewritten as
\[
\begin{align*}
\dot{z}_2 &= a_3 - \hat{r}_d + \frac{T}{m_3} + \frac{d_r}{m_3} \\
\hat{z}_2 &= a_3 - \hat{r}_d + \frac{T}{m_3} + \frac{d_r}{m_3}
\end{align*} \tag{20}\]

Step 2: Stabilizing subsystem z_2.
Defining Lyapunov function as
\[
V_2 = V_1 + s^2 z_2^2 / 2 + (d_r - \dot{\hat{r}}_d)^2 / (2m_3) \tag{21}\]
where $\dot{\hat{r}}_d$ is the estimation value of uncertain impact d_r, and selecting the following switching function
\[
S = c_1 z_2 + a_3 - \hat{r}_d + a_1 w_c + T_r / m_33 + \hat{d}_r / m_33 \tag{22}\]
where c_1 is a positive constant, from the second equation of Eqs. (20) and (22), we have
\[
\dot{z}_2 = S - c_1 z_2 + (d_r - \dot{\hat{r}}_d) / m_33 - a_1 w_c \tag{23}\]
Differentiating V_2 along the solution of Eq. (20), and substituting Eq. (23) into it yield
\[
\dot{V}_2 = V_1 + s^2 z_2^2 - \dot{\hat{r}}_d (d_r - \dot{\hat{r}}_d) / m_33 + \\
= -k_1 w^2 + a_1 w_z z_2 - \dot{\hat{r}}_d (d_r - \dot{\hat{r}}_d) / m_33 + \\
\frac{z_2}{S - c_1 z_2 + d_r - \dot{\hat{r}}_d} / m_33 - a_1 w_c \\
= -k_1 w^2 - c_1 z_2^2 + z_2 s + (z_2 - \dot{\hat{r}}_d) / m_33 \tag{24}\]
We define $\gamma = T_r / m_33$, and make a time derivation of Eq. (22), then we have
\[
\dot{S} = \gamma + c_1 z_2 + a_3 - \hat{r}_d + \dot{\hat{d}}_r / m_33 + a_1 w_c + \hat{a}_w_c \tag{25}\]
Substituting the second equation of Eq. (20) into Eq. (25) yields
\[
\dot{S} = \gamma + c_1 z_2 + a_3 - \hat{r}_d + \dot{\hat{d}}_r / m_33 + a_1 w_c + \hat{a}_w_c \tag{26}\]
Defining Lyapunov function as
\[
V_3 = V_2 + S^2 / 2 \tag{27}\]
Differentiating V_3 along the solution of Eqs. (20) and (22), and substituting Eq. (26) into it yield
\[
\dot{V}_3 = V_2 + S \dot{S} = -k_1 w^2 - c_1 z_2^2 + z_2 s + (z_2 - \dot{\hat{r}}_d) / m_33 \tag{28}\]
We choose the following sliding mode arriving law
\[
\dot{S} = -w_c S - k_s \text{sgn}(S) \tag{29}\]
where k_s, w_c are positive constants; $\text{sgn}(\cdot)$ is a symbolic function. From Eq. (29), we choose the dynamical sliding mode control law γ as
\[
\gamma = [c_1 (a_3 - \hat{r}_d + T_r / m_33 + \hat{d}_r / m_33 + \hat{a}_w_c - \hat{r}_c)] - \\
[d_r / m_33 + a_1 \hat{w}_c + \hat{a}_w_c + z_2 + w_c S + k_s \text{sgn}(S)] \tag{30}\]
Substituting Eq. (30) into Eq. (28) yields
\[
\dot{V}_3 = -k_1 w^2 - c_1 z_2^2 + w_c^2 - k_s |S| + \\
(z_2 + c_1 S) (d_r - \dot{\hat{r}}_d) / m_33 \tag{31}\]
We design the adaptive law $\dot{\hat{d}}_r$ as
\[
\dot{\hat{d}}_r = z_2 + c_1 S \tag{32}\]
Substituting Eq. (32) into Eq. (31) yields
\[
\dot{V}_3 = -k_1 w^2 - c_1 z_2^2 + w_c^2 - k_s |S| + (z_2 + c_1 S) (d_r - \dot{\hat{r}}_d) / m_33 \tag{33}\]
Therefore, if we select the suitably positive parameters k_s, k_1, c_1, k_w, the condition $V_3 \leq 0$ will be satisfied, namely, the control law (Eq. (30)) and adaptive law (Eq. (32)) make the state variables (w_c, z_2) of Eq. (20) globally asymptotically converge to zero. Hence, the subsystem (z_c, \dot{z}_c, r) of Eq. (5) is also globally asymptotically stable.

3.3 Backstepping controller design
In this section, we consider the subsystem (z_c, \dot{z}_c, r) of Eq. (5), and design a path following controller based on backstepping technique. We first assume the uncertain impacts as $d_r = 0$, $d_r = 0$.
Defining Lyapunov function as
\[
V_4 = \dot{V}_1 + s^2 / 2 \tag{34}\]
Differentiating V_4 along the solution of Eq. (20), and substituting the second equation of Eq. (20) into it yield
\[
\dot{V}_4 = V_2 + S \dot{S} = -k_1 w^2 - c_1 z_2^2 + z_2 s + (z_2 - \dot{\hat{r}}_d) / m_33 \tag{35}\]
To guarantee $\dot{V}_4 \leq 0$, we design the feedback control law as
\[
T_r = -m_33 (a_3 - \hat{r}_d + k_2 z_2 + a_1 w_c) \tag{36}\]
where k_2 is a positive constant.
Substituting control law Eq. (36) into Eq. (35) yields
\[
V_4 = -k_1 w^2 - k_2 z_2^2 \leq 0 \tag{37}\]
It is obvious that Eq. (20) is globally asymptotically stable with control law (Eq. (36)), and the subsystem (z_0, ψ_0, r) of Eq. (5) is also globally asymptotically stable. The stability analysis of closed-loop system is presented as follows.

3.4 Stability analysis

The stability analysis of Eq. (4) consists of two steps.

Step 1: Subsystem (z_0, ψ_0, r).

We can prove the stability of subsystem (z_0, ψ_0, r) by applying the design process of 3.2 section and 3.3 section.

Step 2: Subsystem u.

When $z_0 = 0, \psi_0 = 0$, from the second equation of Eq. (4), we have

$$ r = \frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \left[c(s)u^2 + \dot{v}^2 + \frac{u}{(u^2 + \dot{v}^2)} \left(\frac{Y_{m_{22}}}{m_{22}} + \frac{Y_{\psi}}{m_{22}} |v| \right) |v| \right]. $$

Substituting Eq. (38) into the third equation of Eq. (4) yields

$$ \dot{v} = \frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \left[\frac{c(s)u(u^2 + \dot{v}^2) + \frac{u}{(u^2 + \dot{v}^2)} \left(\frac{Y_{m_{22}}}{m_{22}} + \frac{Y_{\psi}}{m_{22}} |v| \right) |v|}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right]d_0 $$

Defining Lyapunov function as

$$ V_s = \frac{m_{22}u^2}{2} $$

Differentiating V_s along the solution of Eq. (4), and substituting Eq. (39) into it yield

$$ \dot{V}_s = \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] \cdot (Y_{u} + Y_{\dot{v}} |v|) \cdot u^2 + \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] \cdot \dot{v}^2 + \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] \cdot u \cdot \dot{v} + \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] \cdot d_0 \cdot \dot{v} \leq -\beta \dot{v}^2 + \mu |v| $$

where

$$ \beta = \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] \cdot (Y_{u} + Y_{\dot{v}} |v|), \mu = \max \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] \cdot d_0. $$

From the Assumption 2, we can see that the expression

$$ \left[\frac{m_{22}(u^2 + \dot{v}^2)}{m_{22}(u^2 + \dot{v}^2) - m_1u^2} \right] > 0, \text{ i.e., the parameter } \beta > 0. $$

Eq. (41) is rewritten as

$$ \dot{V}_s \leq -\beta \dot{v}^2 / 2, \quad \forall |v| > 2\mu / \beta $$

(42)

According to the Lemma 4.19 in Ref. [30], we can prove that the sway motion ν is input-to-state stable, and $\tau(t)$ satisfies

$$ |\tau(t)| \leq \mu(t_0) e^{\frac{1}{2}(\beta I - \nu)} + 2\mu / \beta $$

(43)

where μ is a positive constant, the magnitude of constant μ is determined by uncertainty d_0 and curvature $\varsigma(s)$. Consider a special case: $d_0 = 0$, $c(s) = 0$, then the constant $\mu = 0$. Therefore, the sway motion ν is input-to-state stable.

Theorem 1: If we choose suitably positive parameters k, k_1, k_2, k_3, w_4, the control law (30) and adaptive law (32) can drive the subsystem (z_0, ψ_0, r) in system (Eq. (4)) globally asymptotically stable about the origin, and the sway motion ν is input-to-state stable.

Theorem 2: For Eq. (4), we assume the uncertainties $d_0 = 0, d_1 = 0$. If we choose suitably positive parameters k, k_1, k_2, the control law (Eq. (36)) can drives the subsystem (z_0, ψ_0, r) in Eq. (4) globally asymptotically stable about the origin, and the sway motion ν is input-to-state stable.

Proof: We can prove the Theorems 1 and 2 based on the control design and stability analysis above.

4 Numerical simulations

In this section, we present some simulation tests on an USV [19] to verify the effectiveness of our proposed method. The nominal model parameters are given by $m_0^u = 25.8$ kg, $m_0^w = 33.8$ kg, $m_0^s = 2.76$ kg \cdot m2, $X_0^u = 12$ kg/s, $Y_0^u = 17$ kg/s, $N_0^u = 0.5$ kg \cdot m2/s, $X_0^\psi = 2.5$ kg/m, $Y_0^\psi = 4.5$ kg/m, $X_0^\tau = 0.1$ kg \cdot m2.

In the simulation, we pick the initial system states as: $x(0) = 13$ m, $y(0) = 0$, $\psi(0) = 120^\circ$, $u(0) = 1$ m/s, $v(0) = 0, r(0) = 0$, namely, the center of expected path at the origin with radius $R = 10$ m. Then, we can get the path following errors as $z_0(0) = -3$ m, $\psi_0(0) = 30^\circ$. We consider propeller input saturation conditions: $-2 \text{ N} \cdot \text{m} \leq T \leq 2 \text{ N} \cdot \text{m}$. The backstepping adaptive dynamical sliding mode controller is defined as BADSMC, and backstepping controller (BC) is defined as BC. We select the design parameters of BADSMC method as $k_0 = 0.55$, $k_1 = 0.04$, $k_2 = 0.01$, $w_4 = 0.01$, and BC method as $k = 0.55, k_1 = 0.04, k_2 = 20$.

4.1 Simulation results of nominal model

We set the uncertain impacts as $d_0 = d_1 = d_2 = 0$ in the
simulation. The simulation results are shown in Figs. 2–4.

Figures 2 and 3 show that both controllers can force the USV following the desired path fast, i.e., to achieve the mission of path following with good manipulative performance. Figures 2 and 3 show that the position and state response curves of two controllers almost completely overlap. It is clear that both controllers have very similar convergence rate and dynamic performance under nominal model.

Figure 4 plots the response curves of control moment. For the case of BADSMC, we can see that the output of control moment is smooth without "chattering" phenomenon since the control information is indirectly generated by DSMC method of BADSMC. This can reduce the wear and energy consumption of propeller in actual operation, which is beneficial to the propeller. However, the BC directly obtains moment information so that the moment changes frequently.

4.2 Path following under uncertain influence

This section discusses the problem of path following with uncertainties to illustrate the performance and robustness of proposed method. We assume that the actual model has a parameter perturbation not more than 20%, without the loss of generality, consider an extreme situation in the simulation, and choose the following model parameters of actual USV: \(m_1 = 0.9m_1^0, m_{22} = 0.8m_{22}^0, m_{33} = 0.8m_{33}^0, X_u = 1.1X_u^0, Y_i = 1.2Y_i^0, N_r = 1.2N_r^0, X_{\text{p}_{\text{u}}} = 0.9X_{\text{p}_{\text{u}}}^0, Y_{\text{p}_{\text{i}}} = 1.1Y_{\text{p}_{\text{i}}}^0, N_{\text{p}_{\text{r}}} = 1.1N_{\text{p}_{\text{r}}}^0. \)

From the nominal model simulation, we obtain that the maximums of sway and yaw accelerations are \(\ddot{u}_{\text{max}} = 0.015 \text{ m/s}^2, \ddot{r}_{\text{max}} = 2 (\text{°})/\text{s}^2. \) Therefore, we consider the following external disturbances with the same levels

![Fig. 2 Motion path of USV in nominal model](image-url)

![Fig. 3 Response curves of system state variables: (a) Distance between G and M; (b) Corrected cross-track error; (c) Sway velocity; (d) Yaw velocity](image-url)
of d_{max}, i_{max}, $d_{\psi} = 0.01m_{22}^{0} \cdot [\sin(10\pi t) + \text{rand}(-1,1)]$, $d_{\psi} = 1.0m_{22}^{0} \cdot [\sin(10\pi t) + \text{rand}(-1,1)]$.

The simulation test is implemented under the uncertain influence, and the simulation results are given in Figs. 5–7.

Figures 5 and 6 show that the BADSMC guarantees the path-following errors (z_e, ψ_e) to quickly converge to zero, and the system output curves do not overshoot steady-state error. Although there are uncertainties, the BADSMC still completes the task of path following with uncertain impacts, namely, it has good ability to inhibit uncertain impacts.

However, by the BC method, the path following errors cannot converge to zero. The distance error z_e has some steady-state error, and the cross-track error ψ_e is oscillatory, thereby the USV cannot achieve the task of path following. Figure 6 shows that the velocity response curves are severely oscillatory, namely, the control effectiveness of BC is very poor due to uncertain influence. Figure 7 plots the response curves of control moment. The moment output fluctuation of BADSMC is smaller; while the moment output of BC has severe oscillation even moment saturation.

The above simulation results show that the BADSMC is insensitive to the model perturbation and external disturbance, and with good adaptive capacity and robust performance; while BC is more sensitive to the influence of uncertainty. It is obvious that the straight path following is a simple form of curvy path following; therefore, the proposed controller could be applied to solving the curvy and linear path following problem.
Fig. 6 Response curves of system state variables under uncertain influence: (a) Distance between G and M; (b) Corrected cross-track error; (c) Sway velocity; (d) Yaw velocity

Fig. 7 Response curve of control moment under uncertain influence: (a) Moment of BADSMC method; (b) Moment derivative of BADSMC method; (c) Moment of BC method
5 Conclusions

1) The BADSMC method is proposed based on backstepping technique and theory of DSMC, and a BC method is designed via backstepping technique.

2) Theoretical analysis shows that both controllers can guarantee the subsystem \((z_e, \psi_e, e, r)\) of original system globally asymptotically stable, and sway motion \(\nu\) is input-to-state stable.

3) Simulation comparison tests reveal that compared with the backstepping controller, BADSMC method is insensitive to uncertainties, and has a better dynamic performance, adaptability and strong robustness. Moreover, the control output of BADSMC does not appear “chattering” phenomenon, namely, this method effectively weakens the “chattering” problem of sliding mode control. The theoretical analysis and simulation results validate the effectiveness of proposed method.

References

