自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第43卷    第2期    总第210期    2012年2月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:1672-7207(2012)02-0505-06
基于改进InDBSCAN算法的批量钻削工序
质量增量聚类分析
周友行,董银松,张海华,郭辉

(湘潭大学 机械工程学院,湖南 湘潭,411105)

摘 要: 针对批量钻削工序质量检测问题,采用声发射传感器采集工序加工过程中的声发射信号,提取其时域统计特征,构造工序过程信号的特征向量,根据密度带噪声的空间增量聚类算法(InDBSCAN)对工序过程中的声发射信号特征向量进行增量聚类,以分析批量工序质量。考虑到插入数据点在促成新类创建的同时可能引起已存在的不同类合并的情况,改进InDBSCAN算法。实验结果表明:改进的InDBSCAN算法使插入数据点的增量聚类更加合理,工序质量分布状况检测准确率达84.03%。

 

关键字: 批量钻削;工序质量;特征向量;增量聚类;层次分析法

Incremental cluster analysis for batch drilling-quality based
on improved InDBSCAN algorithm
ZHOU You-hang, DONG Yin-song, ZHANG Hai-hua, GUO Hui

School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan, China, 411105

Abstract:Aiming at monitor and analysis on batch drilling-quality, an acoustic emission sensor was used to collect the acoustic emission signal, extract statistic characteristics and then construct the signal characteristic vector. An improved incremental density based spatial clustering algorithm of time-domain applications with noise (InDBSCAN) was put forward to analyze the distribution law of batch drilling-quality indirectly. Take new data insertion into consideration. Because some of the original clusters could be remerged when the new cluster was created, and so the InDBSCAN algorithm was modified. The results show that the conclusion of incremental cluster analysis is more reasonable by the improved InDBSCAN algorithm and the detection accuracy of batch drilling-quality is up to 84.3%.

 

Key words: batch drilling; process quality; characteristic vector; incremental clustering; analytic hierarchy process

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号