自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第46卷    第8期    总第252期    2015年8月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:1672-7207(2015)08-2898-08
基于柯西分布量子粒子群的混合推荐算法
王桐,曲桂雪

(哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨,150001)

摘 要: 协同过滤推荐算法是最经典、应用最成功的推荐算法之一,但该算法在数据稀疏性、冷启动和时间因素等方面还存在一定问题,于是,提出一种基于柯西分布量子粒子群的混合推荐算法。该算法首先构建基于时间因子的混合推荐模型,再利用柯西分布量子粒子群算法搜索模型中的最优参数组合,其中,混合推荐模型通过把用户和项目的属性信息添加到协同过滤推荐算法中,并引入能够代表用户兴趣迁移特性的时间因子构建而成。最后,与人工蜂群算法(ABC)以及基本粒子群算法(PSO)进行比较。研究结果表明:在提高推荐准确度、缓解数据稀疏性以及冷启动等方面,本文提出的算法优于其他算法。

 

关键字: 推荐算法;柯西分布量子粒子群;数据稀疏;冷启动;时间因子

Hybrid recommendation algorithm based on Cauchy quantum-behaved particle swarm optimization
WANG Tong, QU Guixue

College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

Abstract:Collaborative filtering recommendation algorithm is one of the most typical and successful technologies, about exist problems such as data sparsity, cold start and time factor. Therefore, a hybrid recommendation algorithm based on Cauchy quantum-behaved particle swarm optimization was proposed. According to the algorithm, the hybrid recommendation model was constructed based on time factor, and then, the Cauchy quantum-behaved particle swarm optimization algorithm was applied for searching the optimal parameters of the model. The hybrid recommender model was built by adding the features of the users and items to the traditional collaborative filtering algorithm and introducing a time factor represented the change of users’ interests. The algorithm proposed in this paper was compared with the artificial bee colony (ABC) and particle swarm optimization (PSO). The results show that in increasing recommendation accuracy and alleviating the data sparsity and cold start, the proposed algorithm is better than other algorithms.

 

Key words: recommendation algorithm; Cauchy quantum-behaved particle swarm optimization; data sparseness; cold start; time factor

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号