自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(英文版)

Journal of Central South University

Vol. 26    No. 10    October 2019

[PDF Download]    [Flash Online]

    

Thermoelastic vibration analysis of micro-scale functionally graded material fluid-conveying pipes in elastic medium
TONG Guo-jun(仝国军), LIU Yong-shou(刘永寿), LIU Hui-chao(刘会超), DAI Jia-yin(戴嘉茵)

School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University,Xi’an 710129, China

Abstract:Micro-scale functionally graded material (FGM) pipes conveying fluid have many significant applications in engineering fields. In this work, the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied. Based on modified couple stress theory and Hamilton’s principle, the governing equation and boundary conditions are obtained. The differential quadrature method (DQM) is applied to investigating the thermoelastic vibration of the FGM pipes. The effect of temperature variation, scale effect of the microtubule, micro-fluid effect, material properties, elastic coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied. The results show that in the condition of considering the scale effect and micro-fluid of the microtubule, the critical dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic model. The results also show that the variations of temperature, material properties, elastic coefficient and outer radius have significant influences on the first-order dimensionless natural frequency.

 

Key words: functionally graded materials; thermoelastic vibration; micro-scale; micro-fluid

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号