自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
自然科学版 英文版
英文版编委
自然科学版 英文版
英文版首届青年编委

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第51卷    第2期    总第306期    2020年2月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:1672-7207(2020)02-0340-09
基于高频电磁阀压力控制的列车制动电液系统仿真
李文静1,龚国芳1,刘建2,张亚坤1,杨华勇1

(1. 浙江大学 机械工程学院,浙江 杭州,310027;
2. 名古屋大学 工学研究科,日本 名古屋,4648603
)

摘 要: 针对列车制动系统的安全性及能量转换、储存和再利用特性,提出一种基于高频电磁阀压力控制的列车制动电液系统。该系统可回收部分列车惯性动能,实现列车制动电液系统的自供能,同时可以通过控制高频电磁阀的开闭实现制动液压缸压力的比例控制。基于高频电磁阀压力控制的列车制动电液系统工作原理,建立制动电液系统的数学模型,采用自适应模糊PID控制器调节PWM控制信号占空比,调控高频电磁阀的开关动作,实现制动电液系统压力的比例控制。利用AMESim/Simulink联合仿真平台,搭建HSV(高速开关阀)型高频电磁阀的机械-电子-液压仿真模型及自适应模糊PID控制器,验证制动系统的有效性。研究结果表明:制动液压缸压力在5~10 MPa的阶跃信号跟踪中,上升时间为0.01~0.02 s,且最大超调量均不超过0.66%,制动电液系统的动态品质优良;制动液压缸压力在5~10 MPa的斜坡信号跟踪中,压力跟踪滞后时间均为0.10 s,且误差波动分别在-0.18~0.15 MPa和-0.20~0.25 MPa,压力波动幅度小,压力跟踪滞后较小,控制精度较高,得到了较优的压力控制结果。

 

关键词: 列车制动;高频电磁阀;模糊PID;占空比;压力控制;联合仿真

Simulation of electro-hydraulic system for train brake based on pressure control of high frequency solenoid valve
LI Wenjing1, GONG Guofang1, LIU Jian2, ZHANG Yakun1, YANG Huayong1

1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
2. Graduate School of Engineering, Nagoya University, Nagoya 4648603, Japan

Abstract:Aiming at the security of train brake system and energy transformation, storage and recycle, a novel electro-hydraulic system for train brake based on pressure control of high frequency solenoid valve was proposed. The system can recycle part of the train inertial kinetic energy to realize the self-supply energy of the train braking electro-hydraulic system, and the proportional control of the brake hydraulic cylinder pressure by controlling the opening and closing of the high-frequency solenoid valve. According to the working principle of train brake electro-hydraulic system based on pressure control of high-frequency solenoid valve, a mathematical model of the brake electro-hydraulic system was established. An adaptive fuzzy PID controller was employed to adjust the duty cycle of PWM control signal and regulate the switching action of the high-frequency solenoid valve, and thereby pressure proportional control of the brake electro-hydraulic system was achieved. Taking advantage of the AMESim/Simulink joint simulation platform, the mechanical-electronic-hydraulic simulation model of HSV(high-speed switching valve) high-frequency solenoid valve and the adaptive fuzzy PID controller of train brake system were established, and the train brake system was verified.The results show that in the step signal tracking of the brake hydraulic cylinder pressure at 5-10 MPa, the raised time is 0.01-0.02 s, and the maximum overshoot is not more than 0.66%, which proves that the dynamic quality of the brake electro-hydraulic system is excellent. In the slope signal tracking of the brake cylinder pressure at 5-10 MPa, the pressure tracking lag time is both 0.1 s, and the error fluctuations are -0.18-0.15 MPa and -0.20-0.25 MPa, respectively. The pressure fluctuation range and the pressure tracking lag are little, which proves the control accuracy is better, and a better pressure control result is obtained.

 

Key words: train brake; high frequency solenoid valve; fuzzy PID; duty ratio; pressure control; co-simulation

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765(中) 88836963(英) 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号