自然科学版 英文版
自然科学版 英文版
自然科学版 英文版

您目前所在的位置:首页 - 期刊简介 - 详细页面

中南大学学报(自然科学版)

Journal of Central South University

第20卷    第6期    总第70期    1989年12月

[PDF全文下载]    [Flash在线阅读]

    

机构公共约束辨识及自由度计算“拆闭副法”
吕志雄1

(1.机械工程系)

摘 要: 本文论证了闭环机构公共约束m_i与开环机构末杆约束m′i的差异,提出关系式:mi=m′i+f′i。澄清长期以来在机构自由度计算中关于公共约束的疑难。指出И·И·Артоболевский统一结构公式中的mi,若定义为开环末杆约束m′i,则在自由度计算中,运动副的级有确定的统一定义。阿氏公式与F·Freudenstein公式等效。作者建议取А·П·Мальищев型修正公式:W=6n-sum from k=1kpk+sum from i=1 m′i作为统一结构公式;并提出确定末杆约束的拆闭副法;指出应用刚体运动分解原理考察各运动副对末杆产生的独立运动时,必须考虑末杆的约束条件。文中列举若干计算例题,并与常用计算方法进行对比分析。

 

关键字: 机构; 自由度; 开环/公共约束; 运动副

THE IDENTIFICATION OF GENERAL CONSTRAINT OF MECHANISM AND “SEPARATED-CLOSED PAIR METHOD” IN COMPUTING FREEDOM DEGREE
吕志雄1

1.机械工程系

Abstract:This paper deals with the difference between the general constraint of closed- loop mechanism and end link constraint of open-loop mechanism. An equation has been constituted that can clarify the knotty problem about general constraint in computing the freedom degree of mechanism. It is pointed out that the class of kipematic pairs has its definite definition if the general constraint which is in the integrate equation by E. E. Artobolefski is defined as end link constraint of open- loop. The writer proposes that modified equation by A. P. Marbishef be taken as the integrate construction equation. A separated-closed-pair method has been used for determining end link constraint. It is pointed out that the constraint conditions must be considered in defining end link constraint and analysing the independent motion on end link which is caused by kinematic pairs ih mechanism. This paper has also given some examples of computing freedom degree and made a comparison with the classical method.

 

Key words: mechanism; degree of freedom; open cycle/general constraint; kinematic pair

中南大学学报(自然科学版)
  ISSN 1672-7207
CN 43-1426/N
ZDXZAC
中南大学学报(英文版)
  ISSN 2095-2899
CN 43-1516/TB
JCSTFT
版权所有:《中南大学学报(自然科学版、英文版)》编辑部
地 址:湖南省长沙市中南大学 邮编: 410083
电 话: 0731-88879765 传真: 0731-88877727
电子邮箱:zngdxb@csu.edu.cn 湘ICP备09001153号